DC power supply based on artificial neural networks used in cathodic protection for water carrying pipeline for electricity station

نویسندگان

چکیده

This paper presents a proposed design and investigation of an impressed current Single-Ended Primary Inductive Converter (SEPIC) converter based on artificial neural network to assess the potential difference required control cathodic protection system. The methods proved their effectiveness in metallic equipment industrial applications that contain liquids are buried electrolyte mediums against electrochemical corrosion process, where D.C power supply plays important role consists intelligent d.c group anodes. model has been adjusted be able equalize normal voltage between surrounding medium metal part being protected. tested investigated cooling water carrying pipeline AL-Quds electrical station as unified Iraqi network. voltages currents were calculated with permissible tolerance on; characteristics, its coating, soil along length ensure better performance protection. obtained experimental simulation results showed high accuracy by maintains negative within standard limits Iron pipeline.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

An Electrochemical Measurement for Evaluating the Cathodic Disbondment of Buried Pipeline Coatings under Cathodic Protection

Steel pipelines are susceptible to corrosion by the action of corrosive substance in the environment and one of the most common failure modes in buried pipeline coatingis cathodic disbondment. Consequently, Electrochemical Impedance Spectroscopy (EIS) was used to assess the effect of three important parameters, the thickness of coating, the artificial defect ...

متن کامل

Artificial Neural Networks Model Used for Clear Water Treatment Plants

Artificial neural networks, ANNs, have been widely used especially in the last two decades. ANNs have a wide range of scientific applications, they are used for pattern recognition and forecasting of natural mechanisms. In water treatment, ANNs have enormous potential, especially to support workers in plant operation. In clear water plants are taking large volumes of data, especially informatio...

متن کامل

HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

متن کامل

an electrochemical measurement for evaluating the cathodic disbondment of buried pipeline coatings under cathodic protection

steel pipelines are susceptible to corrosion by the action of corrosive substance in the environment and one of the most common failure modes in buried pipeline coatingis cathodic disbondment. consequently, electrochemical impedance spectroscopy (eis) was used to assess the effect of three important parameters, the thickness of coating, the artificial defect and electrolyte type, on cathodic di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nucleation and Atmospheric Aerosols

سال: 2023

ISSN: ['0094-243X', '1551-7616', '1935-0465']

DOI: https://doi.org/10.1063/5.0105488